Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS.
نویسندگان
چکیده
Mislocalization of endothelial nitric oxide (NO) synthase (eNOS) in response to oxidized low-density lipoprotein, cholesterol depletion, elevated blood pressure, and bound eNOS interacting protein/NOS traffic inducer is associated with reduced NO release via unknown mechanisms. The proper targeting of eNOS to the plasma membrane or intracellular organelles is an important regulatory step controlling enzyme activity. Previous studies have shown that plasma membrane eNOS is constitutively phosphorylated on serine 1179 and highly active. In contrast, the activity of eNOS targeted to intracellular organelles is more complex. The cis-Golgi eNOS is fully activated by Akt-dependent phosphorylation. However, eNOS targeted to the trans-Golgi is decidedly less active in response to all modes of activation, including mutation to the phosphomimetic aspartic acid. In this study, we establish that when expressed within other intracellular organelles, such as the mitochondria and nucleus, the activity of eNOS is also greatly reduced. To address the mechanisms underlying the impaired catalytic activity of eNOS within these locations, we generated subcellular-targeted constructs that express a calcium-independent NOS isoform, iNOS. With the use of organelle specific (plasma membrane, cis- vs. trans-Golgi, plasma membrane, and Golgi, nucleus, and mitochondria) targeting motifs fused to the wild-type iNOS, we measured NO release from intact cells. With the exception of the Golgi lumen, our results showed no impairment in the ability of targeted iNOS to synthesize NO. Confirmation of correct targeting was obtained through confocal microscopy using identical constructs fused to the green fluorescent protein. We conclude that the reduced activation of eNOS within discrete cytoplasmic regions of the Golgi, the mitochondria and the nucleus is primarily due to insufficient access to calcium-calmodulin.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کامل(-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways.
Recent reports indicate that (-)-epicatechin can exert cardioprotective actions, which may involve endothelial nitric oxide synthase (eNOS)-mediated nitric oxide production in endothelial cells. However, the mechanism by which (-)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (-)-epicatechin-induced effects on eNOS, usi...
متن کاملATP2B1 gene Silencing Increases Insulin Sensitivity through Facilitating Akt Activation via the Ca2+/calmodulin Signaling Pathway and Ca2+-associated eNOS Activation in Endothelial Cells
Endothelial cell insulin resistance may be partially responsible for the higher risk of atherosclerosis and cardiovascular disease in populations with insulin resistance and type 2 diabetes mellitus (T2DM). A genome-wide association study revealed a significant association between the ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) gene and T2DM in two community-based cohorts from the Korea...
متن کاملMechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells.
BACKGROUND Decreased endothelial nitric oxide (NO) synthase (eNOS) activity and NO production are critical contributors to the endothelial dysfunction and vascular complications observed in many diseases, including diabetes mellitus. Extracellular nucleotides activate eNOS and increase NO generation; however, the mechanism of this observation is not fully clarified. METHODS AND RESULTS To elu...
متن کاملCalcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005